Complexity of Self-similar Hierarchical Ensembles
نویسنده
چکیده
Within the framework of generalized combinatorial approach, the complexity is determined for infinite set of self-similar hierarchical ensembles. This complexity is shown to increase with strengthening of the hierarchy coupling to the value, which decreases with growth of both scattering of this coupling and non-extensivity parameter.
منابع مشابه
Machines vs. Ensembles: Effective MAPK Signaling through Heterogeneous Sets of Protein Complexes
Despite the importance of intracellular signaling networks, there is currently no consensus regarding the fundamental nature of the protein complexes such networks employ. One prominent view involves stable signaling machines with well-defined quaternary structures. The combinatorial complexity of signaling networks has led to an opposing perspective, namely that signaling proceeds via heteroge...
متن کاملSelf-adaptation and Dynamic Environment Experiments with Evolvable Virtual Machines
Increasing complexity of software applications forces researchers to look for automated ways of programming and adapting these systems. Self-adapting, self-organising software system is one of the possible ways to tackle and manage higher complexity. A set of small independent problem solvers, working together in a dynamic environment, solving multiple tasks, and dynamically adapting to changin...
متن کاملLarge-Scale Image Classification Using Ensembles of Nested Dichotomies
Many techniques to reduce the cost at test time in large-scale problems involve a hierarchical organization of classifiers, but are either too expensive to learn or degrade the classification performance. Conversely, in this work we show that using ensembles of randomized hierarchical decompositions of the original problem can both improve the accuracy and reduce the computational complexity at...
متن کاملGraph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members
Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...
متن کاملA hierarchical fuzzy cluster ensemble approach and its application to big data clustering
Cluster ensembles organically integrate individual component methods which may utilise different parameter settings and features, and which may themselves be generated on the basis of different representations and learning mechanisms. Such a technique offers an effective means for aggregating multiple clustering results in order to improve the overall clustering accuracy and robustness. Many to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006